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Abstract
The equilibrium shapes of a simple cubic crystal in contact with a planar
chemically patterned substrate are studied theoretically using an effective
interface model. The substrate is primarily made of lyophobic material and
is patterned with a lyophilic (easily wettable) stripe domain. Three regimes
can be distinguished for the equilibrium shapes of the crystal. The transitions
between these regimes as the volume of the crystal is changed are continuous or
discontinuous depending on the strength of the couplings between the crystal
and the lyophilic and lyophobic surface domains. If the crystal grows through
a series of states close to equilibrium, the discontinuous transitions correspond
to growth instabilities. These transitions are compared with similar results that
have been obtained for a volume of liquid wetting a lyophilic stripe domain.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A chemically patterned substrate is a solid wall decorated with surface domains that exhibit
different degrees of preference for a fluid or crystalline phase in contact with the wall.
Chemically patterned substrates can be produced by a number of experimental methods; see [1]
and references therein.

A liquid wetting a chemically patterned substrate can exhibit different morphologies and
undergo transitions between them as the volume of liquid is changed. Such morphological
wetting transitions have attracted a lot of interest in recent years. For example, instabilities
affecting the shape of liquid channels on lyophilic (easily wettable) stripe domains have been
studied in great detail [1–4].

In this paper, the case will be discussed in which the phase ‘wetting’ the patterned substrate
is a crystal instead of a liquid. Let us therefore consider the differences between the shapes
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of liquid droplets and crystals. The spherical shape of a droplet in the absence of gravity is a
manifestation that the surface tension of the vapour–liquid interface is isotropic. In contrast,
the surface tension of a crystal is anisotropic; it depends on the orientation of the interface
with respect to the lattice of the crystal. This explains why certain crystal planes are more
favourable than others to form the faces of crystals, which gives them their characteristic
appearance. Despite these differences, one may expect that surface domains which induce
morphological transitions in liquid layers also induce such transitions if the phase wetting the
substrate is a crystal.

The purpose of this paper is to study the equilibrium shapes and morphological transitions
of a simple cubic crystal on a solid and planar chemically patterned substrate at zero
temperature. The substrate is primarily made of lyophobic δ material and is patterned with
a lyophilic γ stripe domain. Here, equilibrium at zero temperature refers to stability under
perturbation of the macroscopic variables that characterize the shape of the crystal. We will
assume implicitly that there is always a microscopic mechanism that allows the crystal to attain
a shape that corresponds to a local minimum of the free energy.

Because the main effect of temperature on the shapes of crystals is to round off their
edges and corners, the morphological transitions in the shape of a simple cubic crystal at low
temperature should not differ dramatically from the results for zero temperature.

This paper is organized as follows. In section 2, an effective interface model is introduced
for crystals on chemically patterned substrates. In section 3, the equilibrium shapes are studied
for a simple cubic crystal on a planar homogeneous (non-patterned) substrate. In section 4, the
shapes are discussed for such a crystal located on a lyophilic stripe domain. Finally, section 5
compares the results for simple cubic crystals on lyophilic stripes with similar results that have
been obtained for liquid channels wetting the same surface domains [4].

2. Effective interface model

For a crystal that is large compared to the unit cell of its lattice, an effective interface model
can be used to investigate its equilibrium shapes. A similar model has been used to study the
morphologies of a volume of liquid wetting chemically patterned walls; see, for example, the
review in [5].

This paper focuses on the equilibrium shapes for a crystal in contact with a planar substrate.
Any real substrate exhibits a lattice periodicity and an anisotropy that affect the shape of a
crystal in equilibrium on its surface. In general, the misfits between the lattice of the crystal
and the substrate introduce surface stresses that are neglected here. There are two particular
cases in which this approximation is clearly appropriate:

(a) a structureless but patterned substrate in which the atoms are not ordered in a lattice
(amorphous material);

(b) a substrate patterned with surface domains that have strictly isomorphic lattices to the
lattice of the crystal.

Furthermore, it is assumed that there are no elastic deformations of the bulk crystal.
In the two cases, (a) and (b), the equilibrium shape at a certain temperature for a

macroscopic crystal in contact with the substrate is given by the minimization of the interfacial
free energy F at constant crystal volume Vβ [6], with

F =
∫
Aαβ

�αβ(n) d A −
∫
Aβσ

[
�ασ (n, x) − �βσ (n, x)

]
d A, (1)

where α, β, and σ correspond to the vapour, the crystal, and the substrate, respectively. The
vapour–crystal and crystal–substrate interfaces are indicated by Aαβ and Aβσ , respectively.
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Figure 1. Simple cubic crystal on a
homogeneous substrate σ .

The normal vector n characterizes the orientation of the crystal lattice plane or (isomorphic)
lattice planes that meet at a certain point of the different interfaces. The vector x indicates a
point on the surface of the substrate. In equation (1), the effects of gravity and line tension
have been neglected.

In the following, the effective interface model is applied to a crystal on a chemically
patterned substrate that is primarily made of lyophobic δ material but is patterned with a
lyophilic γ surface domain. The physical properties of these two types of surface domains are
homogeneous up to well defined boundaries between domains. In this case, it is convenient to
separate the second integral of equation (1) into two integrals, one which integrates over the
crystal–lyophilic interface (Aβγ ) and a second one which integrates over the crystal–lyophobic
interface (Aβδ). Typically, at zero temperature the faces of a crystal present only the crystal
planes which are energetically less costly, and the edges and corners are sharp. If all the faces
between the crystal β and the vapour α have equivalent lattice orientations, the surface tension
�αβ has a constant value for the whole surface of the αβ interface. In this case, one can drop
the n dependence from equation (1), which leads to

F = �αβ

(
Aαβ − cγ Aβγ − cδ Aβδ

)
. (2)

The quantities Aαβ , Aβγ , and Aβδ stand for the areas of the corresponding interfaces. The
material parameters cγ and cδ characterize the coupling of the crystal with the lyophilic γ and
lyophobic δ surface domains, respectively, and are defined by

cγ ≡ (�αγ − �βγ )/�αβ and cδ ≡ (�αδ − �βδ)/�αβ . (3)

For a volume of liquid β partially wetting a planar wall σ , the Young equation, which is

cos θ = (�ασ − �βσ )/�αβ, (4)

relates the contact angle θ to a quotient of surface tensions. The wettability of the wall is
the quantity defined as the right-hand side of equation (4). Notice that the dimensionless
parameters cγ and cδ are equal to the wettabilities of the lyophilic and lyophobic surface
domains, respectively.

3. Crystal on a homogeneous substrate

Let us now consider a simple cubic crystal in equilibrium on a non-patterned wall that either
is perfectly structureless or has the same lattice ordering and spacing as the crystal plane with
Miller indices (100). In equilibrium at zero temperature, the faces of the crystal follow the
easiest lattice planes, which are the planes (100), (010), and (001) of the simple cubic lattice.
Hence, the crystal has the shape of a box of volume Vβ with a square base of lateral side w

and certain height h over the surface of the wall; see figure 1. In this case, the surface tension
is equal in all the faces that form the vapour–crystal interface.
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Let us assume that the unit length of the simple cubic lattice is very small compared to w

and h, so that these variables can be regarded as continuous. The areas of the vapour–crystal
and crystal–wall interfaces are Aαβ = w2 + 4wh and Aβσ = w2, respectively.

The free energy that has to be minimized at constant volume, Vβ = w2h, in order to find
the shape of the crystal is

F = �αβ(Aαβ − cAβσ ), (5)

with the constant

c ≡ (�ασ − �βσ )/�αβ. (6)

The condition of stationarity, that the first derivative of F equals zero, together with the volume
constraint yields

h/w = (1 − c)/2. (7)

This equation characterizes the stationary crystal shape, and corresponds to a minimum of the
free energy F . Let us call the aspect ratio the quotient of the height h of the crystal to the
lateral size w of its base; see figure 1.

The right-hand side of equation (7) is a constant that only depends on the dimensionless
combination of material parameters c. It is convenient to define the parameter

a ≡ (1 − c)/2, (8)

because it has a more direct physical interpretation than c. From equation (7), a is equal to the
equilibrium aspect ratio of the simple cubic crystal in contact with the wall,

h/w = a. (9)

If the system is in equilibrium, �ασ can never exceed �αβ + �βσ , because if it did the
system could always reach a state of lower free energy, namely, the state in which the wall σ

is completely covered by the β phase, and in that case �ασ = �αβ + �βσ . Thus,

�ασ � �αβ + �βσ . (10)

On the other hand, if there is a layer of vapour α between the crystal β and the wall σ ,
two interfaces separate the crystal from the wall and �βσ = �αβ + �ασ . In equilibrium, �βσ

can never exceed �αβ + �ασ , otherwise the system would prefer the situation with the crystal
detached from the wall. Thus,

�βσ � �αβ + �ασ . (11)

For a system in equilibrium, the inequalities (10) and (11) place limits to the values of the
surface tensions of the different interfaces [7, 8]. From these relations, one has

−�αβ � �ασ − �βσ � �αβ, (12)

which implies that the physically meaningful values of the material parameters c and a are
limited to the intervals

−1 � c � 1 and 0 � a � 1. (13)

For c = −1 or a = 1, the crystal is a perfect cube detached from the wall, while for c = 1
or a = 0 the crystal is completely spread on the wall. Notice that in the latter case, because
the finite size of the lattice unit cell is not taken into account in our calculations, there is no
limit for the area that the crystal can cover when it is completely spread on the wall.

Using in equation (5) the condition of stationarity (7) and the volume constraint, Vβ = w2h,
one obtains that the equilibrium free energy for a crystal of volume Vβ is

F(Vβ) = 6�αβa1/3V 2/3
β . (14)
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Figure 2. Three different regimes for a crystal on a lyophilic stripe domain. Regimes I, II, and
III are characterized by w < W , w = W , and w > W , respectively. In all three cases, L is much
larger than �.

4. Crystal on a lyophilic stripe domain

In this section, the equilibrium shapes at zero temperature are studied for a simple cubic crystal
of finite volume Vβ in contact with a planar lyophobic substrate patterned with an infinitely
long lyophilic stripe domain. It is assumed that the lyophilic γ stripe domain and lyophobic δ

surface have lattices that are strictly isomorphic to the lattice of the crystal. The surface of the
substrate corresponds to the (001) plane of the simple cubic lattice, and the lyophilic stripe is
oriented along one of the two main lattice directions parallel to the wall.

The couplings between the crystal and the lyophilic γ and lyophobic δ surfaces are

aγ ≡ (1 − cγ )/2 and aδ ≡ (1 − cδ)/2, (15)

respectively, where cγ and cδ are given by equation (3). Because the γ domain is more attractive
for the crystal than the δ surface, one has that aγ < aδ. From equations (15) and (2), the free
energy of the crystal is

F = �αβ

(
Aαβ − Aβσ + 2aγ Aβγ + 2aδ Aβδ

)
, (16)

with Aβσ ≡ Aβγ + Aβδ.
The contact line is the boundary at which the vapour α, the crystal β, and the wall σ meet.

For a simple cubic crystal in equilibrium on the lyophilic stripe domain, three regimes can be
distinguished that depend on the location of the contact line with respect to the boundaries of
the stripe. These regimes are defined by comparing the width w of the crystal to the width W
of the stripe; see figures 2(I)–(III).

• Regime I. At low volumes Vβ , the contact line is located within the lyophilic stripe domain.
The crystal has a square base with lateral side � = w smaller than the width W of the
stripe, w < W .

• Regime II. For intermediate volumes Vβ , the base of the crystal is a rectangle of width
w equal to the width W of the stripe, w = W . In this regime, two opposed sides of the
contact line are located on top of γ δ domain boundaries.
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• Regime III. The crystal has the shape of a box of width w larger than the width W of the
stripe, w > W . In this case, part of the base of the crystal is on the lyophilic stripe and
part of it is on the lyophobic surface.

At zero temperature, a simple cubic crystal in stable equilibrium on a lyophilic stripe
domain is necessarily in one of the regimes I, II, or III. Other states with the crystal having a
different shape are not stable states. For example, starting with a crystal in regime III of volume
Vβ one could add a ‘deformation’ of volume Vd that covers a longer area of the lyophilic stripe
(similar morphologies have been observed in a volume of liquid wetting a lyophilic stripe [2]).
In order to find the equilibrium shape of the whole crystal, one has to minimize its free energy
at constant volume Vβ + Vd. As a result, one finds that in equilibrium the deformation is
indistinguishable from the rest of the crystal and the final shape is as in figure 2(III).

4.1. Crystal in regime I

In regime I, the contact line is located within the lyophilic stripe domain, the width w of the
crystal is smaller than the width W of the stripe and is equal to the length � of the crystal along
the stripe, � = w < W ; see figure 2(I).

The shape of a crystal in regime I is not affected by the lyophobic part of the substrate.
Thus, the problem of finding the equilibrium shapes in regime I is equivalent to the problem
of finding the equilibrium shapes for a crystal on a homogeneous wall with coupling constant
equal to the coupling aγ on the lyophilic stripe domain. From equation (9), the condition of
stationarity in regime I is

h/w = aγ . (17)

As for a crystal on a non-patterned substrate, the stationary shape given by condition (17)
corresponds to a minimum of the free energy. From equation (14), the free energy of a stable
crystal of volume Vβ in regime I is given by

FI(Vβ) = 6�αβa1/3
γ V 2/3

β . (18)

The condition of regime I, w < W , together with equation (17) impose a restriction on the
volumes Vβ available for a stable crystal in this regime. Only a crystal with volume Vβ < V0,
where

V0 ≡ aγ W 3, (19)

can be stable in regime I.

4.2. Crystal in regime II

In regime II, the width w of the crystal is equal to the width W of the stripe, w = W ; see
figure 2(II). A crystal in regime II has volume Vβ � V0, with V0 as defined in equation (19).

For a crystal in regime II, equation (16) gives

F(h, �) = 2�αβ

(
�h + hW + aγ �W

)
. (20)

Using the volume constraint, Vβ = �hW , to eliminate one of the variables, � or h, the free
energy can be written as a function of the other variable and the parameters �αβ , aγ , W , and
Vβ . In a stationary state, the derivative of F with respect to the remaining variable, � or h, at
constant volume Vβ is zero. From this condition, one has

h/� = aγ . (21)



Crystal shapes on striped surface domains 4791

In regime II, the shape that satisfies the stationarity condition (21) corresponds to a minimum
of the free energy. The free energy of a stable crystal of volume Vβ in regime II is given by

FII(Vβ) = 2�αβ

[
Vβ

W
+ 2

√
aγ W Vβ

]
. (22)

4.3. Crystal in regime III

In regime III, the crystal has the shape of a box of width w larger than the width W of the
stripe, w > W , and length � along the stripe larger than the width w, � > w; see figure 2(III).

In this regime, equation (16) gives

F(h, �,w) = 2�αβ[wh + �h + aγ W� + aδ(w − W )�]. (23)

The volume constraint, Vβ = h�w, can be used to eliminate one of the variables (h, �, or
w). Say that one eliminates h, then one has F(�,w; Vβ). The stationarity conditions, which
correspond to the zeros of the partial derivatives of F(�,w; Vβ) with respect to w and �, are

h/w = aδ (24)

and

h/� = aγ [W/w] + aδ[(w − W )/w], (25)

respectively. In these stationary conditions, the volume constraint, Vβ = h�w, has been used
to introduce h again, because writing the equations in this way makes their interpretation
easier. The condition (24) is similar to (17). The condition (25) is a linear combination of two
relations of the kind of (21) weighted with the fraction of the base of the crystal lying on the
lyophilic stripe, W/w, and on the lyophobic surface, (w − W )/w, respectively.

Using the stationarity conditions and the volume constraint in equation (23), one obtains
that the free energy for a stationary crystal of volume Vβ in regime III is

FIII(Vβ) = 2�αβ

[
2aδ[w(Vβ)]2 +

Vβ

w(Vβ)

]
. (26)

The function w = w(Vβ) relates the width of a stationary crystal in this regime to its volume.
From the stationarity conditions, (24) and (25), and the volume constraint, Vβ = h�w,

one obtains an equation that relates w to Vβ in the stationary states in regime III,

g(w; Vβ) ≡ w4 − Vβ

aδ

w +
aδ − aγ

a2
δ

Vβ W = 0. (27)

This equation defines implicitly w as a function of the volume Vβ , w = w(Vβ). If one scales
the variable w, doing the variable transformation

w =
[

aδ − aγ

aδ
2

VβW

]1/4

y, (28)

equation (27) becomes

y4 − Dy + 1 = 0, (29)

with the dimensionless parameter

D ≡
[

a2
δ

(aδ − aγ )3

Vβ

W 3

]1/4

. (30)

We are interested in the real solutions of equation (27) with w > W or, equivalently, we
are interested in the real solutions of equation (29) with y > y1, where y1 is the value of y
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Figure 3. Plot of equation (34).

for which w = W and which can be obtained from the following argument. The solution of
equation (27) for w = W is

Vβ = V1 ≡ (a2
δ /aγ )W 3. (31)

Hence, y1 is the value of y given by relation (28) for w = W and Vβ = V1,

y1 ≡ [aγ /(aδ − aγ )]1/4. (32)

From equation (30), the value of D for Vβ = V1 is

D = D1 ≡ aδ

/ [(
aδ − aγ

)3
aγ

]1/4
. (33)

Solving equation (29) for D, one has

D = (y4 + 1)/y. (34)

Figure 3 shows a plot of the parameter D as a function of y. Notice that, on the one hand,
y, defined in equation (28), is a function of w and Vβ , y = y(w; Vβ). On the other hand,
D, defined in equation (30), is a monotonic function of Vβ , D = D(Vβ), and increases for
increasing Vβ .

The minimum of equation (34) occurs for y = y2 and D = D2, where

y2 ≡ 3−1/4 and D2 ≡ 4/33/4; (35)

see figure 3. These values correspond to w = w2 and Vβ = V2, with

w2 ≡ 4(aδ − aγ )

3aδ

W and V2 ≡ 44(aδ − aγ )3

33a2
δ

W 3. (36)

In figure 3, each value of D larger than D2 corresponds to two real values of y, one smaller
and one larger than y2. Thus, using the relations (28) and (30), each value of Vβ larger than V2

corresponds to two values of w, one with w < w2 and one with w > w2. One should also take
into account that, by the definition of regime III, only solutions of equation (29) with y > y1

(or w > W ) correspond to this regime.

Two different scenarios in regime III. In order to classify the stationary states in regime III, let
us distinguish two different scenarios that depend on the number of real solutions of equation
(29) for y > y1 (or w > W ):

(i) If y1 � y2, which is equivalent to aδ/4 � aγ ; see figure 4(i):

• For Vβ � V1 (or, equivalently, D � D1), the real solutions of equation (29) correspond
to w � W and, thus, there is no solution in regime III.
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Figure 4. Two different scenarios: (i) y1 � y2 and (ii) y1 < y2. The solid curve stands for the real
solutions of equation (29) with y > y1 (or w > W ), which correspond to stationary states in regime
III. The dashed curve stands for the real solutions of equation (29) without physical meaning in
regime III (y � y1 or w � W ).

• For Vβ > V1 (or D > D1), there is a single real solution in regime III (w > W ).

(ii) If y1 < y2, which is equivalent to aγ < aδ/4; see figure 4(ii):

• For Vβ < V2 (or D < D2), equation (29) has no real solution.
• For Vβ = V2 (or D = D2), there is a single real solution in regime III, y = y2, which

corresponds to w = w2.
• For V2 < Vβ < V1 (or D2 < D < D1), there are two real solutions in regime III.
• For Vβ � V1 (or D � D1), there is a single real solution in regime III.

Once we know the stationary states in regime III, we have to analyse their stability by
studying the second derivative of the free energy F . In both scenarios, (i) and (ii), if there is a
single real solution of equation (29) with w > W (or y > y1) it corresponds to a minimum of
the free energy in regime III. In scenario (ii), for Vβ within the interval V2 < Vβ < V1 there
are two solutions in regime III: the one with W < w < w2 (or y1 < y < y2) corresponds to a
maximum of F and the one with w > w2 (or y > y2) corresponds to a minimum of F .

4.4. Transitions between regimes

Transitions between regime I and II. Let us consider a simple cubic crystal that grows on a
substrate patterned with a lyophilic stripe domain. Assuming that the crystal is always close
to its equilibrium shape, it undergoes morphological transitions between regimes I, II, and III.

At low volumes, the width of the crystal is smaller than the width of the stripe, w < W ,
and the crystal is in a state belonging to regime I. If one increases the volume Vβ of the crystal,
the transition between regime I (w < W ) and regime II (w = W ) occurs for Vβ = V0, where
V0 is the volume defined in equation (19).

The interfacial free energies of the crystals in equilibrium in regimes I and II, FI and FII,
are given by equations (18) and (22), respectively. These free energies and their first derivatives
with respect to the volume Vβ are equal for Vβ = V0, FI(V0) = FII(V0) and F ′

I (V0) = F ′
II(V0).

Therefore, the transitions between regimes I and II are always continuous for any values of the
couplings aγ and aδ with the substrate; see the numerical examples in figures 5 and 6.

Transitions between regimes II and III. The maximum size of a crystal in regime II
corresponds to the volume Vβ at which both stationarity conditions of regime III, (24) and
(25), are satisfied by a crystal of width w = W . This occurs for Vβ = V1, where V1 is the
volume defined in equation (31).
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Figure 5. Numerical example for scenario (i) (aδ/4 � aγ < aδ). Continuous transitions between
regimes I and II, and between regimes II and III. The free energy F(Vβ) is normalized to its value
for Vβ = V1. The coupling constants are aγ = 0.2 and aδ = 0.6.
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Figure 6. Numerical example for scenario (ii) (0 < aγ < aδ/4). Continuous transition between
regimes I and II, and discontinuous transition between regimes II and III. The free energy F(Vβ)

is normalized to its value for Vβ = V1 in regime II. The coupling constants are aγ = 0.05 and
aδ = 0.9.

First, let us consider the case aδ/4 � aγ < aδ, which corresponds to the scenario (i)
described in section 4.3. In this case, the free energies in regimes II and III are equal for
Vβ = V1, FII(V1) = FIII(V1). The free energy FIII , as given by equation (26), is a function
of the volume Vβ and the width w(Vβ) of the crystal. Given a certain volume Vβ , w(Vβ) is a
real solution of equation (27) with w(Vβ) > W . Using the theorem of the implicit function in
equation (27), one can compute the derivative dw/dVβ for the stationary states in regime III.
Applying the chain rule to equation (26), one obtains dFIII/dVβ . From these results, one has
that the first derivatives of FII and FIII with respect to the volume Vβ are equal for Vβ = V1

(and w = W ), F ′
II(V1) = F ′

III(V1). In conclusion, in the case aδ/4 � aγ < aδ the transition
between regimes II and III is continuous and occurs for volume Vβ = V1; see figure 5.

Now, let us consider the case 0 < aγ < aδ/4, which corresponds to the scenario (ii)
described in section 4.3. A numerical example for this case is shown in figure 6. In this figure,
the end point (maximum volume) of the branch of stable states in regime II corresponds to V1,
and the end point of the branch of stable states in regime III (minimum volume) corresponds
to Vβ = V2, where V2 is the quantity defined in equation (36). The transition between regimes
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Figure 7. Diagram indicating the continuity or discontinuity of the transition between regimes
II and III for a simple cubic crystal on a lyophilic stripe domain. The parameters aγ and aδ are
the dimensionless couplings of the crystal with the lyophilic stripe and with the lyophobic surface,
respectively.

II and III for 0 < aγ < aδ/4 is discontinuous. Thus, there is hysteresis in the volume at which
the transition occurs if one goes from regime III to regime II decreasing the volume Vβ , or if
one goes from regime II to regime III increasing Vβ ; see figure 6.

In summary, the continuity or discontinuity of the transition between regimes II and III
depends on the strength of the couplings of the crystal with the lyophilic (aγ ) and lyophobic
(aδ) surface domains. Two different cases can be distinguished. For aδ/4 � aγ < aδ (scenario
(i)), the transition is continuous and occurs at Vβ = V1; see figure 5. For 0 < aγ < aδ/4
(scenario (ii)), the transition is discontinuous and there is hysteresis in the volume at which it
occurs; see figure 6.

In both scenarios, (i) and (ii), irrespective of the continuity or discontinuity of the
transitions between regimes II and III, the morphologies of stable crystals with volume Vβ

larger than V1 always belong to regime III. Figure 7 shows a plot of aδ versus aγ in which
the regions have been indicated that correspond to continuous and discontinuous transitions
between regimes II and III. For aγ > aδ, the stripe domain is less attractive for the crystal than
the rest of the wall, thus the stripe is lyophobic. The case aγ > aδ is out of the scope of this paper.

4.5. Bifurcation diagram

This section is devoted to the diagram of morphologically stable states for a simple cubic
crystal on a lyophilic stripe domain. In figure 8, this diagram has been plotted for aδ = 0.9.
The complete diagram is a three dimensional cartesian graphic with aγ versus aδ in two of
the axes and Vβ/W 3 in the third axis. For a different value of aδ, figure 8 does not change
qualitatively. However, the range of aγ in which the stripe is lyophobic (aγ > aδ), the range in
which the transition between regimes II and III is continuous (aδ/4 � aγ < aδ), and the range
in which this transition is discontinuous (0 < aγ < aδ/4) are shifted when aδ is changed.
The full bifurcation diagram can be obtained from composing the information contained in
figures 7 and 8.
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Figure 8. Bifurcation diagram for a simple cubic crystal on a lyophilic stripe domain. Different
regions indicate different regimes for the stable shapes of the crystal; see the text. aδ = 0.9.

In figure 8, the solid curves between regions (a) and (b), between (b) and (c), and between
(e) and (f) indicate the volumes Vβ for which the free energies in two different regimes are
equal. The dashed curves indicate the limits of stability (‘spinodal’ lines) for the branches of
locally stable states in regions of the diagram in which there is another minimum with lower
free energy.

The stable states corresponding to the regions indicated in figure 8 are as follows.

(a) There is a single minimum, which corresponds to a crystal of square base that lies within
the stripe, w < W (regime I).

(b) The crystal has the shape of a box of width w = W and certain height h > 0 over the
surface of the wall (regime II).

(c) The crystal is detached outward from the boundaries of the stripe, w > W (regime III).
(d) For aγ = 0, the crystal is in regime II, w = W , but it is completely spread on the surface

of the stripe, h = 0. The coupling aγ cannot be negative; see section 3.
(e) In this area of the diagram, for every volume Vβ there are two local minima of the free

energy, one in regime II and one in regime III. The minimum in regime II is the global
minimum.

(f) Identical situation to that in (e), but in (f) the global minimum is in regime III.

The dashed curve between regions (f) and (c) corresponds to the maximum volume of a
crystal in regime II, Vβ = V1, where V1 is the quantity defined in equation (31). This curve
goes to infinity as aγ approaches 0, meaning that for any aγ > 0 a stable crystal in regime II
can only exist for Vβ < V1.

The solid curve between regions (e) and (f) corresponds to the volume at which the free
energies in regimes II and III are equal, and also goes to infinity as aγ goes to 0.

The dashed curve between regions (e) and (b) indicates the minimum volume of a crystal
in regime III, Vβ = V2, which has been defined in equation (36). For aγ = 0, the volume V2

is finite, V2(aγ = 0) = (44/33)aδW 3. Thus, for aγ = 0 a stable crystal in regime III can only
exist for Vβ > (44/33)aδW 3. Actually, the results for aγ = 0 should be taken with caution. In
this limit, the model predicts complete spreading on the lyophilic stripe for a crystal in regime
II (the height h of the crystal goes to 0), but in a real system the finite size of the molecules
limits the spreading of the crystal on the wall.
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To conclude this section, let us emphasize that the transitions between regimes II and III
that occur by changing the volume Vβ at constant aγ and aδ are continuous (no hysteresis)
for aδ/4 � aγ < aδ and discontinuous (hysteresis) for 0 < aγ < aδ/4. In the continuous
transitions, the free energy has only one minimum that moves ‘continuously’ between regimes
II and III when the volume Vβ is changed across the curve that separates regions (b) and (c) in
figure 8. In the discontinuous transitions, in contrast, close to the transition line, i.e., near the
solid curve separating regions (e) and (f) in figure 8, the free energy has two minima for every
volume Vβ , one in regime II and one in regime III. Along the transition line between regions
(e) and (f), both minima have equal depth.

The bifurcation point at which the transition between regimes II and III changes from
continuous to discontinuous, occurs for aγ = aδ/4 and volume Vβ = 4aδW 3. In figure 8,
the bifurcation point is the point where regions (b), (c), (e), and (f) meet. In the space of the
couplings, aγ and aδ, plotted in figure 7, the equation aγ = aδ/4 corresponds to the line of
bifurcation points that separate the region in which the transition between regimes II and III is
continuous from the region in which it is discontinuous.

5. Outlook: comparison with liquid channels

Let us finally compare the results for crystals on lyophilic stripe domains with the results for
liquid morphologies wetting these surface domains. In [4], Brinkmann and Lipowsky have
studied morphological transitions of liquid channels wetting a lyophilic stripe domain, and
they have obtained a bifurcation diagram similar to figure 8. In this analogy, a crystal in
regime I corresponds to a spherical cap of liquid located within the stripe domain, a crystal
in regime II corresponds to a liquid channel extended along the stripe with almost constant
cross-section and the contact line attached to the boundaries of the domain, and a crystal in
regime III corresponds to a channel with a bulge that collects an important amount of the
volume of liquid.

In the case of a crystal on a lyophilic stripe domain, for a given value of aδ the transition
between regimes II and III is continuous or discontinuous depending on the value of aγ .
Likewise, for a given value of the contact angle on the lyophobic surface θδ � π/2 the
transition between a liquid channel and a channel with a bulge is continuous or discontinuous
depending on the value of the contact angle on the lyophilic stripe θγ [4]. Despite these
similarities, the transitions in these two cases differ in several respects.

One should notice that, in the case of liquid wetting a lyophilic stripe, the transition from
a channel to a channel with a bulge does not necessarily involve the detachment of the contact
line from the boundaries of the stripe. In contrast to this, the transition from regime II to regime
III for a simple cubic crystal always involves the detachment of the contact line.

Another important difference between the transitions in liquid channels and crystals on
lyophilic stripes is the following. From the definition of aγ and the Young equation, one has
that

cos θγ = 1 − 2aγ . (37)

A stable crystal in regime II can only grow to volume V1 ≡ (a2
δ /aγ )W 3. For a crystal of

volume Vβ > V1 located on a lyophilic stripe with aγ > 0, which corresponds to θγ > 0,
regime II is unstable and regime III is preferred. In contrast, for an infinitely long lyophilic
stripe with θγ < 38.24◦ patterned on a lyophobic substrate with θδ � π/2, a liquid channel
that grows along the stripe does not produce a bulge as the volume of liquid is increased [4].

A complete bifurcation diagram for liquid channels on lyophilic stripes including the
curves that correspond to the detachment of the contact line from the boundaries of the
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lyophilic stripe, and a study of the cases for different values of θδ are still open questions
and may require extensive numerical computations. A more detailed comparison between
morphological transitions in liquid channels and simple cubic crystals on lyophilic stripes has
to wait to have these questions answered.
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Appendix. List of Symbols

α low density phase (vapour)
β crystal or liquid phase
γ lyophilic surface domain
δ lyophobic surface domain
θ contact angle of a droplet on a wall
θγ , θδ contact angle on a γ and δ domain
�i j surface tension of the i j interface
σ substrate or wall

Ai j surface region of the i j interface
Ai j area of Ai j

aγ , aδ aspect ratio of a crystal on a γ and δ domain
cγ , cδ see equation (3)
D see equation (30)
F interfacial free energy
h height of the crystal on the wall
L length of the lyophilic stripe domain
� length of the crystal along the lyophilic stripe
n vector normal to a crystal plane
Vβ volume of the crystal
W width of the lyophilic stripe domain
w width of the crystal across the lyophilic stripe
x surface coordinate on the wall
y see equation (28)
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